翻訳と辞書
Words near each other
・ Scharteberg
・ Scharten
・ Schartschrofen
・ Scharwenka
・ Scharwoude
・ Scharwoude, Koggenland
・ Scharwoude, Langendijk
・ Scharzfeld
・ Scharzfels Castle
・ Schashagen
・ Schathoes Verhildersum
・ Schattberg (Saalbach-Hinterglemm)
・ Schattdorf
・ Schatten
・ Schatten aus der Alexander Welt
Schatten class operator
・ Schatten norm
・ Schatten – Eine nächtliche Halluzination
・ Schattenberg
・ Schattenberg (Allgäu Alps)
・ Schattenberg (Ore Mountains)
・ Schattenberg Ski Jump
・ Schattenburg
・ Schattendorf
・ Schattenhalb
・ Schattenreiter
・ Schattentantz
・ Schattenwelt
・ Schattschneider
・ Schattwald


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schatten class operator : ウィキペディア英語版
Schatten class operator
In mathematics, specifically functional analysis, a ''p''th Schatten-class operator is a bounded linear operator on a Hilbert space with finite ''p''th Schatten norm. The space of ''p''th Schatten-class operators is a Banach space with respect to the Schatten norm.
Via polar decomposition, one can prove that the space of ''p''th Schatten class operators is an ideal in ''B(H)''. Furthermore, the Schatten norm satisfies a type of Hölder inequality:
: \| S T\| _ \leq \| S\| _ \| T\| _ \ \mbox \ S \in S_p , \ T\in S_q \mbox 1/p+1/q=1.
If we denote by S_\infty the Banach space of compact operators on ''H'' with respect to the operator norm, the above Hölder-type inequality even holds for p \in () . From this it follows that \phi : S_p \rightarrow S_q ', T \mapsto \mathrm(T\cdot ) is a well-defined contraction. (Here the prime denotes (topological) dual.)
Observe that the ''2''nd Schatten class is in fact the Hilbert space of Hilbert–Schmidt operators. Moreover, the ''1''st Schatten class is the space of trace class operators.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schatten class operator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.